Cursos de Red Neuronal Artificial

Red Neuronal Artificial Training

Capacitación en Red Neuronal Artificial -u n paradigma de aprendizaje y procesamiento automático inspirado en la forma en que funciona el sistema nervioso de los animales.

Testimonios de los Clientes

Programas de los Cursos de Red Neuronal Artificial

Código Nombre Duración Información General
matlabdl Matlab for Deep Learning 14 horas In this instructor-led, live training, participants will learn how to use Matlab to design, build, and visualize a convolutional neural network for image recognition. By the end of this training, participants will be able to: Build a deep learning model Automate data labeling Work with models from Caffe and TensorFlow-Keras Train data using multiple GPUs, the cloud, or clusters Audience Developers Engineers Domain experts Format of the course Part lecture, part discussion, exercises and heavy hands-on practice
encogadv Encog: Aprendizaje Automático Avanzado 14 horas Encog es un marco de aprendizaje de máquina de código abierto para Java y .Net. En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán técnicas avanzadas de aprendizaje automático para construir modelos predictivos precisos de redes neuronales. Al final de esta capacitación, los participantes podrán: Implementar diferentes técnicas de optimización de redes neuronales para resolver el ajuste insuficiente y el sobreajuste Comprender y elegir entre varias arquitecturas de redes neuronales Implementar redes supervisadas de retroalimentación y retroalimentación Audiencia Desarrolladores Analistas Científicos de datos Formato del curso Conferencia de parte, discusión en parte, ejercicios y práctica práctica
bspkannmldt Redes Neuronales Artificiales, Pensamiento Profundo y Aprendizaje Automático 21 horas
encogintro Encog: Introducción al Aprendizaje Automático 14 horas Encog es un marco de aprendizaje de máquina de código abierto para Java y .Net. En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo crear varios componentes de redes neuronales usando ENCOG. Se discutirán estudios de casos del mundo real y se explorarán soluciones basadas en el lenguaje de máquina para estos problemas. Al final de esta capacitación, los participantes podrán: Preparar datos para redes neuronales usando el proceso de normalización Implementar redes de feed feed y metodologías de capacitación en propagación Implementar tareas de clasificación y regresión Modelar y entrenar redes neuronales usando el banco de trabajo basado en GUI de Encog Integrar el soporte de redes neuronales en aplicaciones del mundo real Audiencia Desarrolladores Analistas Científicos de datos Formato del curso Conferencia de parte, discusión en parte, ejercicios y práctica práctica
neuralnet Introducción al Uso de Neural Networks 7 horas El curso está dirigido para las personas que quieren aprender lo básico de neural networks y sus aplicaciones.
MicrosoftCognitiveToolkit Microsoft Cognitive Toolkit 2.x 21 horas Microsoft Cognitive Toolkit 2.x (anteriormente CNTK) es un juego de herramientas de código abierto de grado comercial que entrena algoritmos de aprendizaje profundo para aprender como el cerebro humano. Según Microsoft, CNTK puede ser 5-10 veces más rápido que TensorFlow en redes recurrentes, y de 2 a 3 veces más rápido que TensorFlow para tareas relacionadas con imágenes. En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo usar Microsoft Cognitive Toolkit para crear, entrenar y evaluar algoritmos de aprendizaje profundo para su uso en aplicaciones de AI comerciales que involucren múltiples tipos de datos tales como datos, voz, texto e imágenes. Al final de esta capacitación, los participantes podrán: Acceda a CNTK como una biblioteca desde un programa de Python, C # o C ++ Use CNTK como una herramienta independiente de aprendizaje automático a través de su propio lenguaje de descripción de modelo (BrainScript) Utilice la funcionalidad de evaluación del modelo CNTK de un programa Java Combinar DNN de feed-forward, redes convolucionales (CNN) y redes recurrentes (RNNs / LSTM) Escala de capacidad de cálculo en CPU, GPU y múltiples máquinas Acceda a conjuntos de datos masivos utilizando los lenguajes de programación y algoritmos existentes Audiencia Desarrolladores Científicos de datos Formato del curso Conferencia de parte, discusión en parte, ejercicios y práctica práctica Nota Si desea personalizar cualquier parte de esta capacitación, incluido el lenguaje de programación que prefiera, contáctenos para organizarlo.
Fairsec Fairsec: Setting up a CNN-based machine translation system 7 horas Fairseq is an open-source sequence-to-sequence learning toolkit created by Facebok for use in Neural Machine Translation (NMT). In this training participants will learn how to use Fairseq to carry out translation of sample content. By the end of this training, participants will have the knowledge and practice needed to implement a live Fairseq based machine translation solution. Source and target language content samples can be prepared according to audience's requirements. Audience Localization specialists with a technical background Global content managers Localization engineers Software developers in charge of implementing global content solutions Format of the course     Part lecture, part discussion, heavy hands-on practice
MLFWR1 Fundamentos de Aprendizaje Automático con R 14 horas El objetivo de este curso es proporcionar una competencia básica en la aplicación de los métodos de aprendizaje automático en la práctica. A través del uso de la plataforma de programación R y sus diversas bibliotecas, y basado en una multitud de ejemplos prácticos, este curso enseña cómo usar los bloques de construcción más importantes de Aprendizaje de Máquinas, cómo tomar decisiones de modelado de datos, interpretar los resultados de los algoritmos y Validar los resultados. Nuestro objetivo es darle las habilidades para entender y usar las herramientas más fundamentales de la caja de herramientas de Aprendizaje de Máquinas con confianza y evitar las trampas comunes de las aplicaciones de Data Sciences.
Torch Torch: Getting started with Machine and Deep Learning 21 horas Torch es una biblioteca de aprendizaje de máquina de código abierto y un marco informático científico basado en el lenguaje de programación Lua. Proporciona un entorno de desarrollo para numéricos, aprendizaje automático y visión por computadora, con un énfasis particular en aprendizaje profundo y redes convolucionales. Es uno de los marcos más rápidos y flexibles para Machine and Deep Learning y lo utilizan compañías como Facebook, Google, Twitter, NVIDIA, AMD, Intel y muchas otras. En este curso, cubrimos los principios de Torch, sus características únicas y cómo se puede aplicar en aplicaciones del mundo real. Pasamos por numerosos ejercicios prácticos en todas partes, demostrando y practicando los conceptos aprendidos. Al final del curso, los participantes comprenderán a fondo las características y capacidades subyacentes de Torch, así como su rol y contribución dentro del espacio de IA en comparación con otros marcos y bibliotecas. Los participantes también habrán recibido la práctica necesaria para implementar Torch en sus propios proyectos. Audiencia      Desarrolladores de software y programadores que deseen habilitar Machine and Deep Learning dentro de sus aplicaciones Formato del curso      Descripción general de Machine and Deep Learning      Ejercicios de integración y codificación en clase      Preguntas de prueba salpicadas en el camino para verificar la comprensión
Fairseq Fairseq: Setting up a CNN-based machine translation system 7 horas Fairseq is an open-source sequence-to-sequence learning toolkit created by Facebok for use in Neural Machine Translation (NMT). In this training participants will learn how to use Fairseq to carry out translation of sample content. By the end of this training, participants will have the knowledge and practice needed to implement a live Fairseq based machine translation solution. Source and target language content samples can be prepared according to audience's requirements. Audience Localization specialists with a technical background Global content managers Localization engineers Software developers in charge of implementing global content solutions Format of the course     Part lecture, part discussion, heavy hands-on practice
rneuralnet Red Neuronal en R 14 horas Este curso es una introducción a la aplicación de redes neuronales en problemas del mundo real utilizando el software R-project.
drlpython Deep Reinforcement Learning with Python 21 horas Deep Reinforcement Learning refers to the ability of an "artificial agents" to learn by trial-and-error and rewards-and-punishments. An artificial agent aims to emulate a human's ability to obtain and construct knowledge on its own, directly from raw inputs such as vision. To realize reinforcement learning, deep learning and neural networks are used. Reinforcement learning is different from machine learning and does not rely on supervised and unsupervised learning approaches. In this instructor-led, live training, participants will learn the fundamentals of Deep Reinforcement Learning as they step through the creation of a Deep Learning Agent. By the end of this training, participants will be able to: Understand the key concepts behind Deep Reinforcement Learning and be able to distinguish it from Machine Learning Apply advanced Reinforcement Learning algorithms to solve real-world problems Build a Deep Learning Agent Audience Developers Data Scientists Format of the course Part lecture, part discussion, exercises and heavy hands-on practice
d2dbdpa De los Datos a la Decisión con Big Data y Análisis Predictivo 21 horas Audiencia Si intenta dar sentido a los datos a los que tiene acceso o desea analizar datos no estructurados disponibles en la red (como Twitter, Linked in, etc ...) este curso es para usted. Está dirigido principalmente a los tomadores de decisiones y las personas que necesitan elegir qué datos vale la pena recopilar y qué vale la pena analizar. No está dirigido a las personas que configuran la solución, esas personas se beneficiarán de la imagen grande sin embargo. Modo de entrega Durante el curso se presentarán a los delegados ejemplos prácticos de la mayoría de las tecnologías de código abierto. Las conferencias cortas serán seguidas por la presentación y los ejercicios simples por los participantes Contenido y software utilizados Todo el software utilizado se actualiza cada vez que se ejecuta el curso, así que verificamos las versiones más recientes posibles. Cubre el proceso de obtener, formatear, procesar y analizar los datos, para explicar cómo automatizar el proceso de toma de decisiones con el aprendizaje automático.
aiintrozero De Cero a AI 35 horas Este curso se crea para personas que no tienen experiencia previa en probabilidades y estadísticas.
OpenNN OpenNN: Implementación de Redes Neuronales 14 horas OpenNN es una biblioteca de clases de código abierto escrita en C ++ que implementa redes neuronales para su uso en aprendizaje automático. En este curso repasaremos los principios de las redes neuronales y utilizaremos OpenNN para implementar una aplicación de muestra. Audiencia      Desarrolladores de software y programadores que deseen crear aplicaciones de Deep Learning. Formato del curso      Conferencia y discusión junto con ejercicios prácticos.
Neuralnettf Fundamentos de Redes Neuronales Usando TensorFlow como Ejemplo 28 horas Este curso le proporcionará conocimientos en redes neuronales y, en general, en algoritmos de aprendizaje automático, aprendizaje profundo (algoritmos y aplicaciones). Este entrenamiento se enfoca más en los fundamentos, pero lo ayudará a elegir la tecnología adecuada: TensorFlow, Caffe, Teano, DeepDrive, Keras, etc. Los ejemplos están hechos en TensorFlow.
datamodeling Reconocimiento de Patrones 35 horas Este curso proporciona una introducción en el campo del reconocimiento de patrones y el aprendizaje automático. Se trata de aplicaciones prácticas en estadística, informática, procesamiento de señales, visión por computadora, minería de datos y bioinformática. El curso es interactivo e incluye muchos ejercicios prácticos, comentarios de los instructores y pruebas de los conocimientos y habilidades adquiridos. Audiencia      Analistas de datos      Estudiantes de doctorado, investigadores y profesionales
annmldt Redes Neuronales Artificiales, Aprendizaje Automático y Pensamiento Profundo 21 horas
mldt Aprendizaje Automático y Aprendizaje Profundo 21 horas Este curso cubre IA (enfatizando Aprendizaje automático y Aprendizaje profundo)  
mlintro Introducción al Aprendizaje Automático 7 horas Este curso de capacitación es para personas que deseen aplicar técnicas básicas de Aprendizaje de Máquinas en aplicaciones prácticas. Científicos de datos y estadísticos que tienen cierta familiaridad con el aprendizaje de máquinas y saben cómo programar R. El énfasis de este curso está en los aspectos prácticos de la preparación de datos / modelos, la ejecución, el análisis post hoc y la visualización. El propósito es dar una introducción práctica al aprendizaje automático a los participantes interesados en aplicar los métodos en el trabajo Se utilizan ejemplos específicos del sector para hacer que la formación sea relevante para el público.
deeplearning1 Introducción al Aprendizaje Profundo 21 horas Este curso es una visión general de Deep Learning sin profundizar en ningún método específico. Es adecuado para las personas que quieren empezar a usar el aprendizaje profundo para mejorar su precisión de la predicción.
aiint Visión general de Inteligencia Artificial 7 horas Este curso ha sido creado para gerentes, arquitectos de soluciones, oficiales de innovación, CTO, arquitectos de software y todos los interesados en la visión general de la inteligencia artificial aplicada y el pronóstico más cercano para su desarrollo.
undnn Understanding Deep Neural Networks 35 horas This course begins with giving you conceptual knowledge in neural networks and generally in machine learning algorithm, deep learning (algorithms and applications). Part-1(40%) of this training is more focus on fundamentals, but will help you choosing the right technology : TensorFlow, Caffe, Theano, DeepDrive, Keras, etc. Part-2(20%) of this training introduces Theano - a python library that makes writing deep learning models easy. Part-3(40%) of the training would be extensively based on Tensorflow - 2nd Generation API of Google's open source software library for Deep Learning. The examples and handson would all be made in TensorFlow. Audience This course is intended for engineers seeking to use TensorFlow for their Deep Learning projects After completing this course, delegates will: have a good understanding on deep neural networks(DNN), CNN and RNN understand TensorFlow’s structure and deployment mechanisms be able to carry out installation / production environment / architecture tasks and configuration be able to assess code quality, perform debugging, monitoring be able to implement advanced production like training models, building graphs and logging   Not all the topics would be covered in a public classroom with 35 hours duration due to the vastness of the subject. The Duration of the complete course will be around 70 hours and not 35 hours.
aiauto Inteligencia Artificial en Automoción 14 horas Este curso cubre AI (enfatizando Aprendizaje Automático y Aprendizaje Profundo) en la Industria Automotriz. Ayuda a determinar qué tecnología puede (potencialmente) utilizarse en situaciones múltiples en un automóvil: desde la simple automatización, el reconocimiento de imágenes hasta la toma de decisiones autónoma.
facebooknmt Facebook NMT: Setting up a neural machine translation system 7 horas Fairseq es un conjunto de herramientas de aprendizaje de secuencia a secuencia de código abierto creado por Facebok para su uso en la traducción automática neuronal (NMT). En esta capacitación, los participantes aprenderán a usar Fairseq para llevar a cabo la traducción del contenido de muestra. Al final de esta capacitación, los participantes tendrán el conocimiento y la práctica necesarios para implementar una solución de traducción automática basada en Fairseq. Audiencia Especialistas en localización con experiencia técnica Gerentes de contenido global Ingenieros de localización Desarrolladores de software a cargo de implementar soluciones de contenido global Formato del curso Conferencia parcial, discusión parcial, práctica práctica intensa Nota Si desea utilizar contenido específico en el idioma de origen y de destino, contáctenos para organizarlo.
appliedml Aprendizaje Automático Aplicado 14 horas Este curso de capacitación es para personas que deseen aplicar Aprendizaje de la Máquina en aplicaciones prácticas. Audiencia Este curso es para científicos de datos y estadísticos que tienen cierta familiaridad con las estadísticas y saben cómo programar R (o Python u otro idioma elegido). El énfasis de este curso está en los aspectos prácticos de la preparación de datos / modelos, la ejecución, el análisis post hoc y la visualización. El propósito es dar aplicaciones prácticas al Aprendizaje Automático a los participantes interesados en aplicar los métodos en el trabajo. Se utilizan ejemplos específicos del sector para hacer que la formación sea relevante para el público.
mlbankingpython_ Machine Learning for Banking (with Python) 21 horas In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the banking industry. Python will be used as the programming language. Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of team projects. Audience Developers Data scientists Format of the course Part lecture, part discussion, exercises and heavy hands-on practice
cntk Utilizando la Red Informática ToolKit (CNTK) 28 horas Computer Network Toolkit (CNTK) es el sistema de aprendizaje de la máquina de entrenamiento de RNN de Open Source, Multi-máquina, Multi-GPU, altamente eficiente de habla, texto e imágenes. Audiencia Este curso está dirigido a ingenieros y arquitectos con el objetivo de utilizar CNTK en sus proyectos.
dlfornlp Deep Learning for NLP (Natural Language Processing) 28 horas Deep Learning for NLP allows a machine to learn simple to complex language processing. Among the tasks currently possible are language translation and caption generation for photos. DL (Deep Learning) is a subset of ML (Machine Learning). Python is a popular programming language that contains libraries for Deep Learning for NLP. In this instructor-led, live training, participants will learn to use Python libraries for NLP (Natural Language Processing) as they create an application that processes a set of pictures and generates captions.  By the end of this training, participants will be able to: Design and code DL for NLP using Python libraries Create Python code that reads a substantially huge collection of pictures and generates keywords Create Python Code that generates captions from the detected keywords Audience Programmers with interest in linguistics Programmers who seek an understanding of NLP (Natural Language Processing)  Format of the course Part lecture, part discussion, exercises and heavy hands-on practice
dlforfinancewithpython Deep Learning for Finance (with Python) 28 horas Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep learning is a subfield of machine learning which uses methods based on learning data representations and structures such as neural networks. Python is a high-level programming language famous for its clear syntax and code readability. In this instructor-led, live training, participants will learn how to implement deep learning models for finance using Python as they step through the creation of a deep learning stock price prediction model. By the end of this training, participants will be able to: Understand the fundamental concepts of deep learning Learn the applications and uses of deep learning in finance Use Python, Keras, and TensorFlow to create deep learning models for finance Build their own deep learning stock price prediction model using Python Audience Developers Data scientists Format of the course Part lecture, part discussion, exercises and heavy hands-on practice
opennmt OpenNMT: Implementing a Neural Machine Translation solution 7 horas OpenNMT es un sistema de traducción de máquina neural completo, de código abierto (MIT) que utiliza el juego de herramientas matemático de la Antorcha. En esta capacitación, los participantes aprenderán cómo configurar y utilizar OpenNMT para llevar a cabo la traducción de varios conjuntos de datos de muestra. El curso comienza con una visión general de las redes neuronales que se aplican a la traducción automática. Los participantes realizarán ejercicios en vivo para demostrar su comprensión de los conceptos aprendidos y obtener retroalimentación del instructor. Al final de este entrenamiento, los participantes tendrán los conocimientos y la práctica necesarios para implementar una solución OpenNMT en vivo. Las muestras de idioma fuente y de destino pueden pre-arreglarse según los requisitos del cliente. Audiencia Ingenieros de traducción y localización Formato del curso Parte conferencia, discusión de parte, práctica práctica pesada
dlforbankingwithpython Deep Learning for Banking (with Python) 28 horas Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep learning is a subfield of machine learning which uses methods based on learning data representations and structures such as neural networks. Python is a high-level programming language famous for its clear syntax and code readability. In this instructor-led, live training, participants will learn how to implement deep learning models for banking using Python as they step through the creation of a deep learning credit risk model. By the end of this training, participants will be able to: Understand the fundamental concepts of deep learning Learn the applications and uses of deep learning in banking Use Python, Keras, and TensorFlow to create deep learning models for banking Build their own deep learning credit risk model using Python Audience Developers Data scientists Format of the course Part lecture, part discussion, exercises and heavy hands-on practice
tpuprogramming Programación de TPU: Construcción de Aplicaciones de Redes Neuronales en Unidades de Procesamiento de Tensiones 7 horas La Unidad de Procesamiento de Tensor (TPU) es la arquitectura que Google ha utilizado internamente durante varios años y ahora está disponible para el público en general. Incluye varias optimizaciones específicamente para su uso en redes neuronales, incluida la multiplicación simplificada de matrices, y enteros de 8 bits en lugar de 16 bits para devolver niveles adecuados de precisión. En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo aprovechar las innovaciones en los procesadores de TPU para maximizar el rendimiento de sus propias aplicaciones de inteligencia artificial. Al final de la capacitación, los participantes podrán: Entrenar varios tipos de redes neuronales en grandes cantidades de datos Use TPU para acelerar el proceso de inferencia hasta en dos órdenes de magnitud Utilice TPU para procesar aplicaciones intensivas, como búsqueda de imágenes, visión en la nube y fotos Audiencia Desarrolladores Investigadores Ingenieros Científicos de datos Formato del curso Conferencia de parte, discusión en parte, ejercicios y práctica práctica
snorkel Snorkel: Procesar Rápidamente los Datos de Entrenamiento 7 horas Snorkel es un sistema para crear, modelar y gestionar rápidamente datos de entrenamiento. Se enfoca en acelerar el desarrollo de aplicaciones de extracción de datos estructuradas u "oscuras" para dominios en los que grandes conjuntos de entrenamiento etiquetados no están disponibles o son fáciles de obtener. En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán técnicas para extraer valor de datos no estructurados como texto, tablas, figuras e imágenes mediante el modelado de datos de entrenamiento con Snorkel. Al final de esta capacitación, los participantes podrán: Crear programáticamente conjuntos de entrenamiento para permitir el etiquetado de conjuntos de entrenamiento masivos Entrene modelos finales de alta calidad modelando primero conjuntos de entrenamiento ruidosos Use Snorkel para implementar técnicas de supervisión débiles y aplicar programación de datos a sistemas de aprendizaje automático débilmente supervisados Audiencia Desarrolladores Científicos de datos Formato del curso Conferencia de parte, discusión en parte, ejercicios y práctica práctica

Próximos Cursos

Cursos de Fin de Semana de Red Neuronal Artificial, Capacitación por la Tarde de Red Neuronal Artificial, Red Neuronal Artificial boot camp, Clases de Red Neuronal Artificial , Capacitación empresarial de Red Neuronal Artificial, Cursos en linea de Red Neuronal Artificial, Cursos por la Tarde de Red Neuronal Artificial, Clases Particulares de Red Neuronal Artificial, Red Neuronal Artificial en sitio, Cursos Privados de Red Neuronal Artificial, Cursos de Formación de Red Neuronal Artificial, Red Neuronal Artificial con instructor, Instructor de Red Neuronal Artificial, Red Neuronal Artificial coaching, Clases de Red Neuronal Artificial , Capacitador de Red Neuronal Artificial, Talleres para empresas de Red Neuronal Artificial,Capacitación de Fin de Semana de Red Neuronal Artificial

Promociones

Curso Ubicación Fecha Precio del Curso [A distancia / Presencial]
MongoDB for Developers Madrid Mar, 2018-03-06 09:30 2520EUR / 3420EUR
Red Neuronal en R Zaragoza Jue, 2018-03-15 09:30 3357EUR / 3557EUR
Agile Software Testing Madrid Mié, 2018-03-21 09:30 2430EUR / 3330EUR
Introducción MoDAF/NAF Madrid Vie, 2018-03-23 09:30 1422EUR / 1972EUR
Hadoop for Data Analysts Valencia Jue, 2018-06-14 09:30 3672EUR / 3872EUR

Descuentos en los Cursos

Respetamos la privacidad de su dirección de correo electrónico. No vamos a pasar o vender su dirección a otros.
Siempre puede cambiar sus preferencias o anular la suscripción por completo.

Algunos de nuestros clientes