Course Outline

Introduction to Neural Networks

  1. What are Neural Networks
  2. What is current status in applying neural networks
  3. Neural Networks vs regression models
  4. Supervised and Unsupervised learning

Overview of packages available

  1. nnet, neuralnet and others
  2. Differences between packages and itls limitations
  3. Visualizing neural networks

Applying Neural Networks

  • Concept of neurons and neural networks
  • A simplified model of the brain
  • Opportunities neuron
  • XOR problem and the nature of the distribution of values
  • The polymorphic nature of the sigmoidal
  • Other functions activated
  • Construction of neural networks
  • Concept of neurons connect
  • Neural network as nodes
  • Building a network
  • Neurons
  • Layers
  • Scales
  • Input and output data
  • Range 0 to 1
  • Normalization
  • Learning Neural Networks
  • Backward Propagation
  • Steps propagation
  • Network training algorithms
  • range of application
  • Estimation
  • Problems with the possibility of approximation by
  • Examples
  • OCR and image pattern recognition
  • Other applications
  • Implementing a neural network modeling job predicting stock prices of listed

Requirements

Programming in any programming language recommended .

 14 Hours

Custom Corporate Training

Training solutions designed exclusively for businesses.

  • Customized Content: We adapt the syllabus and practical exercises to the real goals and needs of your project.
  • Flexible Schedule: Dates and times adapted to your team's agenda.
  • Format: Online (live), In-company (at your offices), or Hybrid.
Investment

Price per private group, online live training, starting from 3200 € + VAT*

Contact us for an exact quote and to hear our latest promotions

Testimonials (3)

Upcoming Courses

Related Categories