Course Outline
Introduction
- Understanding machine learning with SageMaker
- Machine learning algorithms
Overview of AWS SageMaker Features
- AWS and cloud computing
- Models development
Setting up AWS SageMaker
- Creating an AWS account
- IAM admin user and group
Familiarizing with SageMaker Studio
- UI overview
- Studio notebooks
Preparing Data Using Jupyter Notebooks
- Notebooks and libraries
- Creating a notebook instance
Training a Model with SageMaker
- Training jobs and algorithms
- Data and model parallel trainings
- Post-training bias analysis
Deploying a Model in SageMaker
- Model registry and model monitor
- Compiling and deploying models with Neo
- Evaluating model performance
Cleaning Up Resources
- Deleting endpoints
- Deleting notebook instances
Troubleshooting
Summary and Conclusion
Requirements
- Experience with application development
- Familiarity with Amazon Web Services (AWS) Console
Audience
- Data scientists
- Developers
Custom Corporate Training
Training solutions designed exclusively for businesses.
- Customized Content: We adapt the syllabus and practical exercises to the real goals and needs of your project.
- Flexible Schedule: Dates and times adapted to your team's agenda.
- Format: Online (live), In-company (at your offices), or Hybrid.
Price per private group, online live training, starting from 4800 € + VAT*
Contact us for an exact quote and to hear our latest promotions
Testimonials (5)
Trainer had good grasp of concepts
Josheel - Verizon Connect
Course - Amazon Redshift
The practice part.
Radu - Ness Digital Engineering
Course - AWS: A Hands-on Introduction to Cloud Computing
The training was more practical
Siphokazi Biyana - Vodacom SA
Course - Kubernetes on AWS
The trainer knew exactly what they were speaking about.
Madumetsa Msomi - BMW
Course - AWS DevOps Engineers
All good, nothing to improve