Thank you for sending your enquiry! One of our team members will contact you shortly.
Thank you for sending your booking! One of our team members will contact you shortly.
Course Outline
Deep Learning vs Machine Learning vs Other Methods
- When Deep Learning is suitable
- Limits of Deep Learning
- Comparing accuracy and cost of different methods
Methods Overview
- Nets and Layers
- Forward / Backward: the essential computations of layered compositional models.
- Loss: the task to be learned is defined by the loss.
- Solver: the solver coordinates model optimization.
- Layer Catalogue: the layer is the fundamental unit of modeling and computation
- Convolution
Methods and models
- Backprop, modular models
- Logsum module
- RBF Net
- MAP/MLE loss
- Parameter Space Transforms
- Convolutional Module
- Gradient-Based Learning
- Energy for inference,
- Objective for learning
- PCA; NLL:
- Latent Variable Models
- Probabilistic LVM
- Loss Function
- Detection with Fast R-CNN
- Sequences with LSTMs and Vision + Language with LRCN
- Pixelwise prediction with FCNs
- Framework design and future
Tools
- Caffe
- Tensorflow
- R
- Matlab
- Others...
Requirements
Any programming language knowledge is required. Familiarity with Machine Learning is not required but beneficial.
21 Hours
Custom Corporate Training
Training solutions designed exclusively for businesses.
- Customized Content: We adapt the syllabus and practical exercises to the real goals and needs of your project.
- Flexible Schedule: Dates and times adapted to your team's agenda.
- Format: Online (live), In-company (at your offices), or Hybrid.
Price per private group, online live training, starting from 4800 € + VAT*
Contact us for an exact quote and to hear our latest promotions
Testimonials (3)
Hunter is fabulous, very engaging, extremely knowledgeable and personable. Very well done.
Rick Johnson - Laramie County Community College
Course - Artificial Intelligence (AI) Overview
I liked the new insights in deep machine learning.
Josip Arneric
Course - Neural Network in R
Ann created a great environment to ask questions and learn. We had a lot of fun and also learned a lot at the same time.