Course Outline

Introduction to Mistral at Scale

  • Overview of Mistral Medium 3
  • Performance vs cost tradeoffs
  • Enterprise-scale considerations

Deployment Patterns for LLMs

  • Serving topologies and design choices
  • On-premises vs cloud deployments
  • Hybrid and multi-cloud strategies

Inference Optimization Techniques

  • Batching strategies for high throughput
  • Quantization methods for cost reduction
  • Accelerator and GPU utilization

Scalability and Reliability

  • Scaling Kubernetes clusters for inference
  • Load balancing and traffic routing
  • Fault tolerance and redundancy

Cost Engineering Frameworks

  • Measuring inference cost efficiency
  • Right-sizing compute and memory resources
  • Monitoring and alerting for optimization

Security and Compliance in Production

  • Securing deployments and APIs
  • Data governance considerations
  • Regulatory compliance in cost engineering

Case Studies and Best Practices

  • Reference architectures for Mistral at scale
  • Lessons learned from enterprise deployments
  • Future trends in efficient LLM inference

Summary and Next Steps

Requirements

  • Strong understanding of machine learning model deployment
  • Experience with cloud infrastructure and distributed systems
  • Familiarity with performance tuning and cost optimization strategies

Audience

  • Infrastructure engineers
  • Cloud architects
  • MLOps leads
 14 Hours

Custom Corporate Training

Training solutions designed exclusively for businesses.

  • Customized Content: We adapt the syllabus and practical exercises to the real goals and needs of your project.
  • Flexible Schedule: Dates and times adapted to your team's agenda.
  • Format: Online (live), In-company (at your offices), or Hybrid.
Investment

Price per private group, online live training, starting from 3200 € + VAT*

Contact us for an exact quote and to hear our latest promotions

Upcoming Courses

Related Categories