Course Outline

Introduction

  • What are vector databases?
  • Vector databases vs traditional databases
  • Overview of vector embeddings

Generating Vector Embeddings

  • Techniques for creating embeddings from various data types
  • Tools and libraries for embedding generation
  • Best practices for embedding quality and dimensionality

Indexing and Retrieval in Vector Databases

  • Indexing strategies for vector databases
  • Building and optimizing indices for performance
  • Similarity search algorithms and their applications

Vector Databases in Machine Learning (ML)

  • Integrating vector databases with ML models
  • Troubleshooting common issues when integrating vector databases with ML models
  • Use cases: recommendation systems, image retrieval, NLP
  • Case studies: successful implementations of vector databases

Scalability and Performance

  • Challenges in scaling vector databases
  • Techniques for distributed vector databases
  • Performance metrics and monitoring

Project Work and Case Studies

  • Hands-on project: Implementing a vector database solution
  • Review of cutting-edge research and applications
  • Group presentations and feedback

Summary and Next Steps

Requirements

  • Basic knowledge of databases and data structures
  • Familiarity with machine learning concepts
  • Experience with a programming language (preferably Python)

Audience

  • Data scientists
  • Machine learning engineers
  • Software developers
  • Database administrators
 14 Hours

Custom Corporate Training

Training solutions designed exclusively for businesses.

  • Customized Content: We adapt the syllabus and practical exercises to the real goals and needs of your project.
  • Flexible Schedule: Dates and times adapted to your team's agenda.
  • Format: Online (live), In-company (at your offices), or Hybrid.
Investment

Price per private group, online live training, starting from 3200 € + VAT*

Contact us for an exact quote and to hear our latest promotions

Upcoming Courses

Related Categories