Cursos de Kubeflow

Cursos de Kubeflow

Los cursos de capacitación Kubeflow vivo dirigidos por un instructor de Kubeflow demuestran a través de la práctica práctica interactiva cómo usar Kubeflow para construir, implementar y administrar flujos de trabajo de aprendizaje automático en Kubernetes . Kubeflow entrenamiento de Kubeflow está disponible como "entrenamiento en vivo en el sitio" o "entrenamiento en vivo a distancia". La capacitación en vivo en el lugar puede llevarse a cabo localmente en las instalaciones del cliente en España o en los centros de formación corporativa de NobleProg en España . El entrenamiento remoto en vivo se lleva a cabo a través de un escritorio remoto interactivo. NobleProg: su proveedor de capacitación local

Machine Translated

Testimonios

★★★★★
★★★★★

Programa del curso Kubeflow

Nombre del Curso
Duración
Descripción General
Nombre del Curso
Duración
Descripción General
35 horas
Descripción General
Kubeflow is a toolkit for making Machine Learning (ML) on Kubernetes easy, portable and scalable. AWS EKS (Elastic Kubernetes Service) is an Amazon managed service for running the Kubernetes on AWS.

This instructor-led, live training (online or onsite) is aimed at developers and data scientists who wish to build, deploy, and manage machine learning workflows on Kubernetes.

By the end of this training, participants will be able to:

- Install and configure Kubeflow on premise and in the cloud using AWS EKS (Elastic Kubernetes Service).
- Build, deploy, and manage ML workflows based on Docker containers and Kubernetes.
- Run entire machine learning pipelines on diverse architectures and cloud environments.
- Using Kubeflow to spawn and manage Jupyter notebooks.
- Build ML training, hyperparameter tuning, and serving workloads across multiple platforms.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 horas
Descripción General
Kubeflow is a framework for running Machine Learning workloads on Kubernetes. TensorFlow is a machine learning library and Kubernetes is an orchestration platform for managing containerized applications.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to an AWS EC2 server.

By the end of this training, participants will be able to:

- Install and configure Kubernetes, Kubeflow and other needed software on AWS.
- Use EKS (Elastic Kubernetes Service) to simplify the work of initializing a Kubernetes cluster on AWS.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Leverage other AWS managed services to extend an ML application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 horas
Descripción General
Kubeflow is a framework for running Machine Learning workloads on Kubernetes. TensorFlow is one of the most popular machine learning libraries. Kubernetes is an orchestration platform for managing containerized applications.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to Azure cloud.

By the end of this training, participants will be able to:

- Install and configure Kubernetes, Kubeflow and other needed software on Azure.
- Use Azure Kubernetes Service (AKS) to simplify the work of initializing a Kubernetes cluster on Azure.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Leverage other AWS managed services to extend an ML application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 horas
Descripción General
Kubeflow is a framework for running Machine Learning workloads on Kubernetes. TensorFlow is one of the most popular machine learning libraries. Kubernetes is an orchestration platform for managing containerized applications.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to Google Cloud Platform (GCP).

By the end of this training, participants will be able to:

- Install and configure Kubernetes, Kubeflow and other needed software on GCP and GKE.
- Use GKE (Kubernetes Kubernetes Engine) to simplify the work of initializing a Kubernetes cluster on GCP.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Leverage other GCP services to extend an ML application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 horas
Descripción General
Kubeflow is a framework for running Machine Learning workloads on Kubernetes. TensorFlow is one of the most popular machine learning libraries. Kubernetes is an orchestration platform for managing containerized applications.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to IBM Cloud Kubernetes Service (IKS).

By the end of this training, participants will be able to:

- Install and configure Kubernetes, Kubeflow and other needed software on IBM Cloud Kubernetes Service (IKS).
- Use IKS to simplify the work of initializing a Kubernetes cluster on IBM Cloud.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Leverage other IBM Cloud services to extend an ML application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 horas
Descripción General
Kubeflow is a framework for running Machine Learning workloads on Kubernetes. TensorFlow is one of the most popular machine learning libraries. Kubernetes is an orchestration platform for managing containerized applications. OpenShift is an cloud application development platform that uses Docker containers, orchestrated and managed by Kubernetes, on a foundation of Red Hat Enterprise Linux.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to an OpenShift on-premise or hybrid cloud.

- By the end of this training, participants will be able to:
- Install and configure Kubernetes and Kubeflow on an OpenShift cluster.
- Use OpenShift to simplify the work of initializing a Kubernetes cluster.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Call public cloud services (e.g., AWS services) from within OpenShift to extend an ML application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 horas
Descripción General
Kubeflow is a toolkit for making Machine Learning (ML) on Kubernetes easy, portable and scalable.

This instructor-led, live training (online or onsite) is aimed at developers and data scientists who wish to build, deploy, and manage machine learning workflows on Kubernetes.

By the end of this training, participants will be able to:

- Install and configure Kubeflow on premise and in the cloud.
- Build, deploy, and manage ML workflows based on Docker containers and Kubernetes.
- Run entire machine learning pipelines on diverse architectures and cloud environments.
- Using Kubeflow to spawn and manage Jupyter notebooks.
- Build ML training, hyperparameter tuning, and serving workloads across multiple platforms.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
- To learn more about Kubeflow, please visit: https://github.com/kubeflow/kubeflow

Próximos Cursos Kubeflow

Cursos de Fin de Semana de Kubeflow, Capacitación por la Tarde de Kubeflow, Kubeflow boot camp, Clases de Kubeflow, Capacitación de Fin de Semana de Kubeflow, Cursos por la Tarde de Kubeflow, Kubeflow coaching, Instructor de Kubeflow, Capacitador de Kubeflow, Kubeflow con instructor, Cursos de Formación de Kubeflow, Kubeflow en sitio, Cursos Privados de Kubeflow, Clases Particulares de Kubeflow, Capacitación empresarial de Kubeflow, Talleres para empresas de Kubeflow, Cursos en linea de Kubeflow, Programas de capacitación de Kubeflow, Clases de Kubeflow

Promociones

Descuentos en los Cursos

Respetamos la privacidad de su dirección de correo electrónico. No vamos a pasar o vender su dirección a otros.
Siempre puede cambiar sus preferencias o anular la suscripción por completo.

Algunos de nuestros clientes

is growing fast!

We are looking for a good mixture of IT and soft skills in Spain!

As a NobleProg Trainer you will be responsible for:

  • delivering training and consultancy Worldwide
  • preparing training materials
  • creating new courses outlines
  • delivering consultancy
  • quality management

At the moment we are focusing on the following areas:

  • Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
  • SOA, BPM, BPMN
  • Hibernate/Spring, Scala, Spark, jBPM, Drools
  • R, Python
  • Mobile Development (iOS, Android)
  • LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
  • You need to have patience and ability to explain to non-technical people

To apply, please create your trainer-profile by going to the link below:

Apply now!

Este sitio en otros países / regiones